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Abstract 
 

In this paper, it is shown that two popular conceptions about the behavior of negative 
power law (neg-p) noise—that is, noise with a PSD Lp(f) ∝∝∝∝ |f| p for p<0—are based on 
myth and that the reality is quite different. The first myth is that one can “fix” a neg-p 
divergence problem in a variance like a standard or N-sample variance simply by 
replacing it with an Allan or Hadamard variance without further action. The paper will 
show that each type of variance has a different interpretation as an error measure and 
that such arbitrary swapping merely masks the true problem. In the process, we will 
show that such variance divergences are true indicators of severe system or modeling 
problems that must be physically addressed not ignored. The second myth is that one 
can use ensemble based statistical estimation techniques like least squares and Kalman 
filters to properly estimate polynomial deterministic behavior in data containing non-
highpass filtered neg-p noise. It is demonstrated that such noise can generate highly 
anomalous fitting results because non-highpass filtered neg-p noise is both infinitely 
correlated and non-ergodic. Thus, non-p noise is shown to act more like systematic 
error than conventional noise in such cases. 

I.  INTRODUCTION 
This paper will show that two popular conceptions in dealing with negative power law noise (neg-p) noise 
are based on myth and that the reality is quite different. By neg-p noise, we mean noise with a single 
sideband (SSB) power spectral density (PSD) Lp(f) ∝ |f| p for p<0 [1,2]. This paper is not questioning the 
reality that higher order ∆-variances [3], like Allan [1] and Hadamard variances [4] are convergent 
measures of neg-p noise [1,4]. What the paper will show is that it is myth that one can “fix” neg-p 
divergence problems in common variances like standard and sample variances [5] simply by replacing 
them with ∆-variances without further action. We will show that each type of variance is a statistical 
answer to a different type of error question and that arbitrarily changing variances is misleading in that it 
doesn’t fix the divergent answer to the original question. Furthermore, we will show that such variance 
divergences have physical significance—that they are valid indicators of real problems that must be fixed 
by changing the system or the question being asked, not mathematical artifacts to be ignored. 

A second myth we will address is that one can use ensemble based statistical estimation theory, such as 
least squares [5] and Kalman [7] filters, on data containing neg-p noise to properly estimate true or 
deterministic polynomial behavior also contained in the data, unless the neg-p noise is sufficiently highpass 
filtered [8-11]. We will demonstrate that fitting results in such cases cannot separate the true behavior from 
much of the noise, because non-highpass filtered neg-p noise is both infinitely correlated and non-ergodic 
(ensemble averages are not equal to time averages). 
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II.  MYTH 1: ONE CAN ARBITRARILY SWAP VARIANCES TO “FIX”  
NEG-P DIVERGENCE PROBLEMS 

In this section, we will show that each type of variance is a statistical answer to a different type of error 
question. Thus arbitrarily swapping variances misleadingly changes the question and does not eliminate a 
divergent answer to the original question.  

A. STATISTICAL ESTIMATION   
Statistical error measures like variances are generally defined in the context of statistical estimation. Fig. 1 
and Table I describe the truth model and variables we will use in discussing statistical estimation. This 
model applies to least squares fitting (LSQF) [5] and Kalman filters [6] in a posteriori form [12], as well 
as other similar statistical estimation techniques. We will briefly summarize this model here, and the reader 
is referred to [7-11] for more detail. In this model, x(t) is general data variable (not necessarily the time 
error) whose samples x(tn) are collected over an interval T. t and tn here are ideal continuous and discrete 
observation times and are considered error-free. x(t) in our model is the sum of xc(t) the true or 
deterministic behavior and xr(t) the contaminating error or measurement noise. In the model, an 
unspecified estimation technique generates a “best” estimate of xc(t) by adjusting M-parameters am in a 
model function xa,M(t) based on some fit over x(tn). Note that we will use xa,M(t) both to describe the model 
function with adjustable parameters and the final fit depending on the context. We also note that xc(t), x(t), 
and xa,M(t) can be functions of other time dependent variables, such as temperature and pressure [13]. For 
simplicity, these other variables are not shown.  
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Fig. 1. Truth model and variables for statistical estimation. 
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Table I. Statistical Estimation Model & Error Measures 

Basic variables 
Measured data : x(tn) = xc(tn) + xr(tn)               Sample times : tn  (over data period T) 
True or deterministic behavior: xc(t)               True noise: xr(t) 
M parameter model function and final estimate of xc(t): xa,M(t)  
(M-1)th order polynomial model function: xpoly,M(t) = Σm am(t - t0)

m  [ m = 0:M-1] 
Basic Error Measures 

True accuracy of fit: xw,M(tn) = xa,M(tn) – xc(tn)   
Data precision: xj,M(tn) = x(tn) – xa,M(tn) 
M th order ∆-measures (stability & precision under certain conditions): ∆(τ)Mx(tn) 
1st forward difference: ∆(τ) = x(tn+τ) - x(tn)   
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B. BASIC ERROR MEASURES   
In Fig. 1 and Table I, we define the true accuracy of the fit at tn as xw,M(tn); that is, the accuracy is the 
difference between xa,M(tn) and xc(tn). xw,M(tn) is of course unobservable from the data alone, since a priori 
knowledge of xc(t) is required to generate it. The basic observable error measure at tn is the data precision 
xj,M(tn) defined as the difference between x(tn) and xa,M(tn), also given in Table I. From xw,M(tn) and xj,M(tn), 
one can form two types of theoretical variances (see Table I):  

(a) )t( n
2

M,w∆  and )t( n
2

M,j∆  we will call point variances. These are generally used in a Kalman filter [6].  

(b) 2
M,wσ  and 2

M,jσ  we will call average variances over T weighted by ξn. These are generally used in a 

LSQF [5].   

Note that 2
M,wσ  is also called the standard variance and 2

1,jσ  is called the sample variance when ξn=1/(N-1) 

and the fit solution is the sample mean xa,1(t) = N-1Σnx(tn) [5].  Note also that the above are “theoretical” or 
ensemble variances formed by averaging over an ensemble of data sets [14], that is, by using an ensemble 
averaging operator E  as opposed to an infinite time average operator <…> over a single ensemble member 

[14]. Finally note that 2
M,wσ  and 2

M,jσ  may have implicit t-dependence, because both xa,M(tn) and xc(t) are 
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not generally time invariant [9,10]. 

Another set of measures used to describe random error we will call Mth order ∆-measures )t(x)( n
Mτ∆  [3]. 

These and their theoretical variances )t( n
2

M,τ∆  and 2
M,τσ  are defined in Table I [10,11]. These are 

measures of x(t) variations over the interval τ. We note that )t( n
2

M,τ∆  and 2
2,τσ  is related to the Allan 

variance of the time error [1], and 2 3,τσ  is related to the Hadamard variance of the time error [4,15].  
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Fig. 2. ∆-measures as stability and precision measures 

∆-measures are generally interpreted as measures of M th order stability [1,4,15]. To understand this 
interpretation, let us precisely define what we mean by Mth order stability. Consider Fig. 2(a). Here, we 
show M+1 data points x(tm’) where we have passed a model function xa,M(t) exactly through M of the M+1 
points, excluding the point at tm. This is possible because there are M points and M adjustable parameters 
in xa,M(t), so there are zero degrees of freedom [5]. We then define the Mth order stability as the data 
precision xj,M(tm) at the excluded point. Note from the figure that xj,M(tm) can be either an extrapolation or 
interpolation error depending on tm. What is important about this is one can show that 

 )t(x)()t(x 0
M

mM,j τ∆∝  (1) 

when: (a) xa,M(t) is xpoly,M(t) an (M-1)th order polynomial, and (b) the tm’ are separated by the time interval τ 
[3]. Thus, ∆-variances are measures of such Mth order stability. 

Fig. 2(b) shows the data precision when all M+1 x(tm’) are used to determine xpoly,M(t) with an unweighted 
LSQF. In this case, one can also show that (1) is true [7,8,16]. Thus, Mth order ∆-variances can also be 
considered data precision measures under these conditions. The proportionality constants relating 

)t(x mM,j to )t(x)( 0
Mτ∆  for both the stability and precision have been published [7,8]. In the precision 

case, the published constant is derived semi-empirically [7], but we note that Charles A. Greenhall has 
provided the author with a totally analytical derivation of this constant [16].  Thus, the Allan variance can 
also be interpreted as a measure of data precision for M+1 x(tm) spaced by τ when a time and frequency 
offset are removed from the data by an unweighted LSQF [6,7]. Similarly, the Hadamard variance can also 
be interpreted as a measure of such data precision when a time and frequency offset and the frequency drift 
are removed from the data by an unweighted LSQF [6,7]. This explains the sensitivity of the Allan 
variance and insensitivity of the Hadamard variance to deterministic frequency drift, since such drift is an 
unmodeled error term for M = 2 but not for M = 3 [7,8]. 

C. THE FIT PRECISION (ERROR BARS)-A DERIVED ERROR MEAS URE 
From the data precision variances, one can generate what we will call the fit precision (deviate) or error 
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bars )t( nM,wj∆  and M,wjσ , as given in Table I [9-11]. These are statistical estimates of the accuracy based 

both on the observable data precision and the ratios ρd(tn) and ρd, which are theoretically calculated using a 
a specific noise model (and assuming that xa,M(t) would precisely reproduce xc(t) over T if no noise were 
present). For example, ρdo=M/(N-M) is the ρd for uncorrelated or white xr(tn) and an unweighted LSQF [5]. 
We note that this ρdo does not apply when the xr(tn) are correlated [7-11]. We will later show that this 
misuse of the white ρdo is one of the sources of unexpected fitting results when neg-p noise is present. 

D. THE NEG-P CONVERGENCE PROPERTIES OF VARIANCES  

It is well-known that an average variance2ςσ  can be represented using the spectral integral [14,17] 

 )f(L|)f(H|)f(Kdf p
2

s
2

ς
∞+

∞−ς ∫=σ    [ζ = w,M; j,M; τ,M; …]   (2) 

Here, Hs(f) is a response function that describes the noise filtering properties of the system, and Kζ(f) is a 
spectral kernel that describes the Lp(f) filtering properties of the variance in question independent of Hs(f) 

[3,17]. It is well known that the ∆-variance kernel Kτ,M(f) has M2f  highpass (HP) filtering properties for 
|f| << 1 [1,3,4]. Less well known is the fact that the Mth order data precision kernel Kj,M(f) has the same 

M2f  highpass (HP) filtering properties for |f| << 1 when xa,M(t) is an (M-1)th order polynomial xpoly,M(t) 
[7,8]. This result is true for general fitting techniques given only minimal restrictions [7,8]. Fig. 3 shows 
this Kj,M(f) HP behavior when both a weighted and unweighted LSQF are used as the fitting technique 

[7,8]. Thus both 2
M,jσ  and 2

M,τσ  are guaranteed to converge for neg-p noise when 2M ≥ |p| [3,5,6-8].  
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Fig. 3. Kj,M(f) HP filtering behavior for xpoly,M(t). 

On the other hand, the accuracy kernel Kj,M(f) has no HP filtering properties. (In fact, one can show that 

1)f(K)f(K M,wM,j =+  for a LSQF [11].) Thus, 2
M,wσ  relies totally on the HP filtering properties of |Hs(f)|

2 

for its convergence in the presence of neg-p noise [7-11]. Because of this, there is the obvious temptation 
to “fix” a neg-p accuracy variance divergence simply by replacing it with one of the convergent variances 
without further action. In the next section, we will show that this is improper. 
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E. EACH VARIANCE ADRESSES A DIFFERENT ERROR QUESTION 
We have just shown that each type of variance addresses a different statistical error question: 

(a) Accuracy: What is the error of the fit from the true behavior without noise or other error present? 
(b) Data Precision: What are the data fluctuations from the fitted behavior? 
(c) Fit Precision: What is the estimated fit accuracy based on the measured data and a noise model?   
(d) Stability: What is the extrapolation or interpolation error to an additional point from a perfect M 
point polynomial fit? 

From this, it is obvious that one cannot eliminate a divergence problem in one type of variance simply by 
arbitrarily replacing it with another type, since all this does is misleadingly change the question and leaves 
the divergence intact for the original question.   

T
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Fig. 4.  A physical interpretation of a neg-p accuracy divergence. 

This leaves the problem of how to interpret the physical meaning of such a neg-p accuracy divergence. Fig. 
4 shows one such interpretation. Here, we show several data ensemble members where the data consists 

entirely of 2f −  or random walk noise [2]. Note that the 2f −  noise process is started at finite time (t = 0), 
which is called the non-stationary (NS) picture (to be discussed later) [2,11,14]. At a time t0 after the noise 
process has started, we then perform a one-parameter LSQF on the data over T to generate our fit 
xpoly,1(t) = a0. One can immediately see that something is amiss. We note that 1,jσ  is significantly less 

than 1,wσ . Thus a white noise based fit precision 1,wjσ  will severely underestimate the true accuracy 1,wσ  

when N >> 1. Furthermore, one can easily show that ∞→σ2
1,w  as t0→∞, while 2

1,jσ  will remain finite [7-

11]. This is a physical meaning of a neg-p accuracy variance infinity: that the true accuracy of a fit will 
become severely inaccurate when t0 is large (which is the typical physical case). One can obviously see 
from this example that using the wrong 1,wjσ  and M,τσ  to represent 1,wσ  in this case will just mask the 

problem, not fix it.  

The proper response here would be: (a) to theoretically analyze ρd using the correct noise model [7-11], (b) 
to identify that the 1,wσ  infinity will occur before performing the experiment, and (c) to redesign the 

system (Hs(f)) and/or reformulate the question so that the accuracy infinity will not occur [7-11]. This last 
step often involves the introduction of periodic calibration [11]. 

For 3|f| −  noise, note that ∞→σ2
1,j  as tg→∞ but that 2

2,jσ  will remain finite [7,8]. Thus, if one is interested 

in obtaining a finite data precision, the proper response to a 2M,jσ  infinity is to change the estimation model 

M-order, not to arbitrarily switch to an Allan or Hadamard variance and leave the model function xa,M(t) 
untouched.  

Finally, we note that )tfln( 0h
2

M,w ∝σ  for 1|f| −  noise and Hs(f) given by a low pass cut-off fh [2]. Thus, 

even though the 1|f| −  contribution to 2
M,wσ  is strictly infinite as t0→∞, practically, this 1|f| −  contribution 

is often smaller than the white noise contribution, even when t0 is the age of the universe [17].  
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III.  MYTH 2: ONE CAN OBTAIN PROPER ESTIMATION RESULTS 
FROM (NON-HP FILTERED) NEG-P NOISE CONTAINING DATA 
In this section, we will show that non-HP filtered neg-p behaves more like systematic error than 
conventional noise. Thus, estimation techniques like least squares and Kalman filters can generate severely 
anomalous results when such noise is present, since estimation techniques have difficulty separating 
systematic error from true behavior [5].  We will show that this systematic-like behavior is due to the non-
ergodic and infinitely correlated behavior of non-HP filtered neg-p noise. In the next sections, will show 
that neg-p noise has these properties using the non-stationary (NS) and wide-sense stationary (WSS) 
pictures of a random process [2,10,11,14,18].  

A. THE NS AND WSS PICTURES OF A RANDOM PROCESSES  
Two covariant representations or pictures are generally used when discussing a random process xr(t). The 
more inclusive but less familiar one is the non-stationary (NS) picture summarized in Table II [2,18]. In the 
NS picture, xr(t) is zero for t<0 or some other finite value. Because of this finite start time, the noise 
covariance or autocorrelation function of the process Rr(tg,τ) [14,18] (the same here because we are 
assuming Exr(t)=0) has two time arguments: tg the global or average time from the start of the noise 
process (t=0), and τ the difference or local time between the covariant xr arguments [18]. The other less 
inclusive picture is the more familiar wide-sense stationary (WSS) one [2,12,14,19]. This picture is also 
summarized in Table II. Here, xr(t) is non-zero for all, t and xr(t) is assumed to be statistically time 
invariant so that the autocorrelation function is now given by Rr(τ). We note that xr(t) must also be 
statistically bounded for the process to be WSS, because many WSS theorems require such bounded 
behavior for their proof [19]. This bounded behavior is often ignored in descriptions of neg-p noise, which 
can lead to erroneous conclusions. Even when the underlying noise process is inherently WSS, note that 
one must use the NS Rr(tg,τ) for small tg, because of initial start-up transients [2].  

As shown in Table II, an NS process has three different covariant spectral functions that are formed by the 
Fourier Transforms (FTs) of Rr(tg,τ) with respect to various combinations of tg and τ [18]. The Wigner-
Ville function Wr(tg,f) in the table can be interpreted as a tg dependent PSD and is the most physically 
intuitive for neg-p noise analysis. The Loève Spectrum Lr(fg,f) in the table, on the other hand, is useful for 
simplifying analytical expressions [2,9]. The Ambiguity Function Ar(fg,τ) in the table is included here for 
completeness and is used in signal processing [18]. In the WSS picture, the SSB PSD Lr(f) defined in 
Table II is the well-known spectral function formed by taking the complex Fourier transform of Rr(τ) with 
respect to τ  [12,14,19]. Note that one can also use the double sideband PSD Sr(f), as is common practice 
in time and frequency papers [1]. 

An important measure of the behavior of a random process is its correlation time τc, which is defined in 
Table II. Note that this definition is an extension of a WSS one [20] to include the NS picture in the limit 
of tg→∞. τc is an important parameter in statistical estimation, because Ni=T/τc represents the number of 
statistically independent samples over T [20]. Thus, averaging over N samples reduces errors by some 
power of Ni (not N) when the relevant noise process is correlated, and only when T >> τc [10,11]. This will 
be very important in later discussions. 

Finally, note from Table II that one can relate the NS picture to the WSS picture by letting tg→∞ (tg→∞ is 
equivalent to letting the xr(t) start time go to -∞) [2,21].  Two important NS to WSS theorems based on this 
are also given in Table II [2,11]. These theorems will play a prominent role in understanding the true 
statistical properties of neg-p noise, as we will discuss in the next section. 
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Table II. Representations of a Random Process 

Non-Stationary (NS) Picture  
xr(t) = 0 for t<0 

tg = Global or average time from start of noise process 
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(Complex) Fourier 
Transform 

]f2[)t(v)tjexp(dt)t(v)f(V f,t π=ωω−≡= ∫
∞+

∞−
F  

Wide-Sense Stationary (WSS) Picture 
xr(t) ≠≠≠≠ 0 for all t 

tx r
(t

)

ττττ
t=0

tx r
(t

)

ττττ
t=0  

Covariance or Correlation 
Fn (xr(t) real, E xr(t) = 0) 

)2/t(x)2/t(x)(R grgrr τ−τ+=τ  E  

(SSB) Power Spectral 
Density 

)(R)f(L r,fr τ= τF  

NS ���� WSS Theorems [4,21] 

),t(RLim)(R gr
t

r
g

τ=τ
∞→

  )f,f(LjLim)f,t(WLim)f(L grg
0f

gr
t

r
gg

ω==
→∞→

 

Lp(fg,f) form of Lr(f) derived from the Laplace Final Value Theorem. 

 

B. THE STATISTICAL PROPERTIES OF NEG-P NOISE 
Table III. Properties of Non-highpass Filtered Neg-p Noise 

NS Picture: 
Rp(tg,τ) < ∞  for tg <  ∞  Rp(tg,τ) = ∞ for tg → ∞  

∞<∞< ggp t,fallfor)f,t(W  Note bandlimiting needed to make Wp(tg,τ) finite for p≥-1 

WSS Picture: 

∞=τ=τ
∞→

),t(RLim)(R gp
t

p
g

 WSS Rp(τ) is undefinable for all τ. 

p
gp

t
p |f|)f,t(WLim)f(L

g

∝=
∞→

 Rp(τ) not needed to define Lp(f) 

Neg-p noise has an infinite correlation time: τc = ∞ 
Neg-p noise is inherently non-ergodic: E xp(t)  ≠ <xp(t)>T→∞. 

 
One can show that non-HP filtered neg-p noise has the basic properties listed in Table III [2]. Note that the 
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WSS Rp(τ) is infinite for all τ, because ),t(RLim)(R gp
t

p
g

τ=τ
∞→

 as given in Table II. Thus the WSS Rp(τ) is 

strictly indefinable. However, because )f,t(WLim)f(L gp
t

p
g ∞→

=  and this limit is well-behaved for f≠0, one 

can properly define the WSS Lp(f) for f≠0 without the use of the WSS Rp(τ). Thus, one can interpret 
equations such as (2) as the tg→∞ limit of the NS picture and properly apply them to neg-p problems. 

Another important property of non-HP filtered neg-p noise listed in  

Table III is that its τc is infinite. This means that Ni is effectively zero for all T, which is one of the factors 
that leads to the anomalous neg-p fitting behavior that we will discuss later. 

A very important (and not well-known property) of non-HP filtered neg-p noise is that it is intrinsically  
non-ergodic, that is the infinite time average < xp(t)>T→∞ is not equal to the ensemble average E

 xp(t) for 
such noise [10,11,14,22]. This is a consequence of a theorem stating that an NS random process xp(t) is 
ergodic if and only if Rp(tg,τ) is bounded for all tg (including ∞) and the last xp(t) point in <xp(t)>T becomes 
decorrelated with <xp(t)>T as T→∞ [22]. This decorrelation property can be shown to imply that τc must be 
finite. This is another factor that leads to the anomalous fitting behavior of neg-p noise, which we will now 
discuss. 

C. ANOMALOUS FITTING BEHAVIOR IN FINITE DATA SETS  
Now let us investigate how the non-ergodicity and infinite τc of neg-p noise effects practical 
implementations of fitting techniques, such as least squares and Kalman filters. Fig. 5 shows a simulated 
unweighted LSQF for both p = 0 and  p = -3 noise when: (a) both the true behavior xc(t) and the model 
function xa,M(t) are 2nd order polynomials (M=3), (b) Hs(f) is an ideal Nyquist LP filter, and (c) the 
uncorrelated ρdo is used to predict the error bars xa,M(t)±σwj,M (which are so small in the figures that they 
appear coalesced with xa,M(t)). In the p = 0 case shown on the left of Fig. 5, note that the fit behaves as 
ensemble-based white-noise fitting theory predicts; that is, xc(t) and xa,M(t) fall on top of each other for the 
large N used, and σwj,M properly predicts σw,M.   

For the p = -3 case on the right of the figure, however, note that xa,M(t) significantly deviates from xc(t) 
while the white-noise based error bars do not properly predict this deviation. 

xa,M ± σσσσwj,M–x --xc

f 0 Noise f -3 Noise

 
Fig. 5. Unweighted LSQF with p = 0 and p = -3 (N=2048). 

What is happening here is that the particular xr(tn) ensemble member in this example has behavior that is 
2nd order polynomial-like and thus substantially correlated with xc(t) so that LSQF cannot separate this 
correlated noise component from the true behavior of xc(t) [5]. This is what generates the anomalous fitting 
results; the fit interprets the correlated noise as being part of xc(t). Such anomalous behavior is well-known 
as result of correlated systematic error [5] and is a specific example of a more general principal—that 
linearly dependent variables cannot be separated by any solution technique, because the determinant of the 
solution matrix goes to zero [24]. This systematic-like behavior in the neg-p noise case is a direct result of 
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its infinitely correlated and non-ergodic nature. Thus, E-averaged theory predictions do not represent the 
behavior of individual ensemble members over the data collection interval.  

An important consequence of the above is that noise whitening, a procedure meant to determine the true 
structure of xc(t) by increasing M in the model function xa,M(t) until the residuals xj,M(tn) are uncorrelated 
[5], will not properly identify xc(t) when non-HP filtered neg-p noise is present. That is, the truth model for 
such noise whitening is uncorrelated noise plus true behavior, and neg-p noise is highly uncorrelated. Note 
that p = -1 noise can be a marginal case when white noise is also present, because of the slow growth of 
this noise as tg becomes large [17].  

R
an

ge
 �� ��

f 0 Noise

f -2 Noise f -2 Noise

White
Noise Model

Correlated
Noise Model

xa,M ± ∆∆∆∆wj,M–x --xc

R
an

ge
 �� ��

f 0 Noise

f -2 Noise f -2 Noise

White
Noise Model

Correlated
Noise Model

xa,M ± ∆∆∆∆wj,M–x --xc xa,M ± ∆∆∆∆wj,M–x --xc  
Fig. 6. Anomalous neg-p behavior in a Kalman filter. 

Fig. 6 shows that Kalman filters also exhibit such anomalous neg-p behavior when neg-p noise is present. 
Here, simulation results are shown for both p = 0 and p = -2 noise (measurement noise not process noise 
[6,12]) when xc(t) and xa,M(t) are again both quadratic polynomials. In the middle graph, where p = -2 and 
an uncorrelated noise model is used [4], one again sees the characteristic veering off of xa,M(t) from xc(t) 
and the gross underestimation of the true errors by the error bars. What is even more interesting is the right 
graph. Here again p = -2, but the Kalman filter is augmented with a random walk measurement noise 
model, which is supposed to correct for such anomalous behavior [6]. One can see that xa,M(t) is closer to 
xc(t) and the error bars do a better job of estimating the true error. However, there still are substantial 
deviations of xa,M(t) from xc(t) and the error bars still underestimate the true error. The culprit here is the 
non-ergodic-like behavior of the neg-p noise and the mimicking of the true behavior by the neg-p noise. It 
is expected that p = -3 noise would exhibit even more significant anomalous behavior with an augmented 
Kalman filter, because p = -3 noise looks like a slowly changing random drift [2]. However, the author has 
not demonstrated this yet. 

D. ERGODICITY, ττττC, AND PROPER FITTING BEHAVIOR 
 

(a) (b) (c) (d)

xa,M ± ∆∆∆∆wj,M–x --xc –xa,M

(a) (b) (c) (d)

xa,M ± ∆∆∆∆wj,M–x --xc –xa,M xa,M ± ∆∆∆∆wj,M–x --xc –xa,M  

Fig. 7. Kalman filter simulations for a correlated Gauss-Markov process: 
(a) T/τc=2000,  (b) T/τc=200,  (c) T/τc=20,  (d) T/τc=2. 

Fig. 7 illustrates that neg-p-like anomalous fitting behavior also occurs in ergodic WSS but correlated 
processes when one does not have T/τc >> 1. Shown here is a (non-augmented) Kalman simulation using 
stationary Gauss-Markov noise (single pole lowpass filtered white noise [12,14]). This noise is both 
ergodic and WSS but has a τc related to the reciprocal of the lowpass knee frequency of the noise filter. 
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One can observe from the figure that the Kalman results behave as theoretically expected for T/τc >> 1 but 
become more and more anomalous as T/τc approaches 1. This occurs because the single noise ensemble 
members averaged over T here do not behave like their ensemble averaged counterparts when T 
approaches τc. That is, the noise is not ergodic-like over T (E… ≠ <…>T) when we don’t have T/τc >>1 
[11]. One can see here that strict ergodicity, E… = <…>T→∞ [14,22] does not guarantee such ergodic-like 
behavior over any T. Another way to view this, is that there are not enough statistically independent 
samples Ni = T/τs when we don’t have T/τc >> 1 for the fit to be statistically meaningful. We note that 
works on ensemble based fitting theory [5,6,12] often implicitly assume E… ≅ <…>T  as N→∞ for any T, 
but we have just shown this is not the case for correlated noise processes. This assumption for T→0 is 
called local ergodicity [25]. To coin a phrase, a noise process with a substantial τc is intermediate ergodic; 
that is, one must have T/τc >> 1 for the process to be ergodic-like.  

Finally, what is obvious from this above discussion is that non-highpass filtered neg-p noise will generate 

such anomalous polynomial fitting behavior for any T, because τc = ∞. Again, 1|f| −  noise can often be a 

marginal exception, because t0 is large but not infinite and white noise effects can dominate.  

IV.  CONCLUSIONS 
In this paper, we have shown that one cannot simply swap variances to “fix” a neg-p divergence problem 
without further action. We have shown that each type of variance is a statistical answer to a different error 
question and such arbitrary swapping merely masks the true problem that caused the divergence. We have 
also shown that such neg-p variance divergences are true indicators of estimation problems that must be 
physically addressed, not ignored. Furthermore, we have shown that non-highpass filtered neg-p noise acts 
like systematic error and generates anomalous behavior in statistical estimation techniques like least 
squares and Kalman filters when the estimation functions consist of polynomials.  It has also been shown 
that this systematic behavior is due to the non-ergodic and infinitely correlated nature of such neg-p noise. 
As a final note, the surest way to reduce the anomalous effects of neg-p noise is develop frequency 
standards with lower neg-p noise. This is good news for frequency standards developers. 
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