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Abstract

In this paper, it is shown that two popular concépts about the behavior of negative
power law (neg-p) noise—that is, noise with a PSEf). Z7|f|” for p<O—are based on
myth and that the reality is quite different. Thé$t myth is that one can “fix” a neg-p
divergence problem in a variance like a standard Nrsample variance simply by
replacing it with an Allan or Hadamard variance wibut further action. The paper will
show that each type of variance has a differentdrgretation as an error measure and
that such arbitrary swapping merely masks the trpeoblem. In the process, we will
show that such variance divergences are true ind@a of severe system or modeling
problems that must be physically addressed not igao The second myth is that one
can use ensemble based statistical estimation tépies like least squares and Kalman
filters to properly estimate polynomial determiritstbehavior in data containing non-
highpass filtered neg-p noise. It is demonstratdthtt such noise can generate highly
anomalous fitting results because non-highpassdiktd neg-p noise is both infinitely
correlated and non-ergodic. Thus, non-p noise isogin to act more like systematic
error than conventional noise in such cases.

I. INTRODUCTION

This paper will show that two popular conceptiomsléaling with negative power law noise (heg-psaoi
are based on myth and that the reality is quitéeint. By neg-p noise, we mean noise with a single
sideband (SSB) power spectral density (PSi¥) L [f|® for p<0 [1,2]. This paper is not questioning the
reality that higher ordei-variances [3], like Allan [1] and Hadamard variaac[4] are convergent
measures of neg-p noise [1,4]. What the paper shitw is that it is myth that one can “fix” neg-p
divergence problems in common variances like st@hdad sample variances [5] simply by replacing
them with A-variances without further action. We will show tthech type of variance is a statistical
answer to a different type of error question arat Hrbitrarily changing variances is misleadinghat it
doesn'’t fix the divergent answer to the originakstion. Furthermore, we will show that such var&anc
divergences have physical significance—that theyvatid indicators of real problems that must bedi

by changing the system or the question being asi@dnathematical artifacts to be ignored.

A second myth we will address is that one can usemble based statistical estimation theory, ssch a
least squares [5] and Kalman [7] filters, on dabtataining neg-p noise to properly estimate true or
deterministic polynomial behavior also containedhie data, unless the neg-p noise is sufficierghass
filtered [8-11]. We will demonstrate that fittingsults in such cases cannot separate the trueibefram
much of the noise, because non-highpass filterggpneoise is both infinitely correlated and nonestig
(ensemble averages are not equal to time averages).



II. MYTH 1. ONE CAN ARBITRARILY SWAP VARIANCES TO “FIX”
NEG-P DIVERGENCE PROBLEMS

In this section, we will show that each type ofiaace is a statistical answer to a different typeroor
guestion. Thus arbitrarily swapping variances nadiegly changes the question and does not elimmate
divergent answer to the original question.

A. STATISTICAL ESTIMATION

Statistical error measures like variances are gélgatefined in the context of statistical estirati Fig. 1
and Table | describe the truth model and variableswill use in discussing statistical estimatiornisT
model applies to least squares fitting (LSQF) 34 &alman filters [6] ina posteriori form [12], as well

as other similar statistical estimation techniqge. will briefly summarize this model here, and thader

is referred to [7-11] for more detail. In this madet) is general data variable (not necessalily time
error) whose samples ¥(tare collected over an interval T. t andeére are ideal continuous and discrete
observation times and are considered error-fref. iR( our model is the sum of () the true or
deterministic behavior and.(® the contaminating error or measurement noise.the model, an
unspecified estimation technique generates a “bedifnate of Xt) by adjusting M-parameters,an a
model function xu(t) based on some fit over X(tNote that we will use(t) both to describe the model
function with adjustable parameters and the fiitaldpending on the context. We also note théj,x(t),
and x v(t) can be functions of other time dependent véembsuch as temperature and pressure [13]. For
simplicity, these other variables are not shown.

Mth Order A-Measures A(T)Mx(t,)
= A(T)X(t,) —*
X(t) —— A(DX(t,) ——— AX(t,+T) —%

Fit Precision [a] 1.
N0|se Data PreC|S|on X JM(tn) A, M(tn) 3

r(t)

0
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Accuracy of Estimate x , y(t,)
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Xc(t) Behavior x , (1) Data X(tn)t
e ——————— N Samp|es att , over P ;

Fig. 1. Truth model and variables for statisticgtiraation.
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Table |. Statistical Estimation Model & Error Meass

Basic variables
Measured data : xfit= x(t,) + %(t) Sample times,; (over data period T)
True or deterministic behaviory(® True noise;(®)
M parameter model function and final estimate @) xx, m(t)
(M-1)th order polynomial model function;eg,m(t) = Zm am(t - )™ [ m = 0:M-1]
Basic Error Measures
True accuracy of fit: xm(tn) = Xam(tn) — %(tn)
Data precision: i (t,) = X(t) — Xam(tn)
M™ orderA-measures (stability & precision under certain ¢oos): A(t)"'x(t,)
1% forward differenceAA(t) = Xx(t,+1) - X(t,)
Variances

Point variancgKalman): Azc(tn) =E[X(tn) - f{xc (t)H 2 [c=w,M or j,M]

AveragevarianceoverT (LSQF): crg = ZnEnA%(tn) [n=1:N]

M 2
. M!
%\ (tn) = A ElDOMx ()12 o2y =Zn Enlim(th) Aw =n§‘0(mj

& = Ensemble average &, = Data weighting over T
Derived Error Measures
Fit precision (point variance) A% y (tn) =Py (ty)A5 y (t,)

Fit Precision(averagevariance) 65 y =P40°u

pa andpq(t,) are theoretically calculated fropy(t,) = A%N,M (tn)/Azj,M (t,) and

Pg = oev,M /01-2,,\/, based on a specific error model and assuming rdehesror.

B. BASIC ERROR MEASURES

In Fig. 1 and Table I, we define the true accuratyhe fit at t as %, u(ty); that is, the accuracy is the
difference between,x(t,) and x(t»). xwm(ty) is of coursaunobservable from the data alone, sinegpriori
knowledge of Y1) is required to generate it. The basiiservable error measure af is the data precision
X;m(t,) defined as the difference betweenx@nd x v(t,), also given in Table I. From,x(t,) and xwm(ty),
one can form two types of theoretical variances {&able |):

@) A%N’M (t,) and AZJ-,M (tn,) we will call point variances. These are generadlgd in a Kalman filter [6].

(b) Gev,M and 01-2,,\,, we will call average variances over T weightedéhyThese are generally used in a
LSQF [5].

Note thatoﬁv,,\,, is also called the standard variance aﬁg is called the sample variance whgr1/(N-1)

and the fit solution is the sample mean(® = N'=x(t,) [5]. Note also that the above are “theoretical” or
ensemble variances formed by averaging over am#iseof data sets [14], that is, by using an ensemb
averaging operatat as opposed to an infinite time average operator<over a single ensemble member

[14]. Finally note thatc\%,,M and 01-2,,\,, may have implicit t-dependence, because bgilfty and x(t) are



not generally time invariant [9,10].

Another set of measures used to describe randamwer will call M" orderA-measuresy(t)M x(ty) [3].
These and their theoretical variancA%,M (tn) and o2 are defined in Table | [10,11]. These are
measures of x(t) variations over the intervaMe note thatA%M(tn) and o?, is related to the Allan
variance of the time error [1], ansf ; is related to the Hadamard variance of the timer ¢4,15].

X(tM) X(tm)

Xim(th) ] Xt %i X(t )
X(to) ]’{r -e= i J’M( m)’{‘ -V Xj,M(tm) """ b. o
LA "=y o _-x 70T

T #* ¢ »T* L -
*« Xyu(ta) -+ « Xuta)fit » »T e &
fit overt o...ty4 overt,.tybutnot,, ¥+ Xguta)
: . fitoverallt ...t

Extrapolation Interpolation
+—a) Stability ——™ (b) Precision

Fig. 2.A-measures as stability and precision measures

A-measures are generally interpreted as measurddobrder stability [1,4,15]. To understand this
interpretation, let us precisely define what we még M" order stability. Consider Fig. 2(a). Here, we
show M+1 data points x) where we have passed a model functigg(® exactly through M of the M+1
points, excluding the point at.tThis is possible because there are M points aratijdstable parameters
in Xam(t), so there are zero degrees of freedom [5]. Wém tdefine the M order stabilityas the data
precision xm(tm) at the excluded point. Note from the figure tkai(t,) can be either an extrapolation or
interpolation error depending on What is important about this is one can show that

xjm (tm) D ADMx(to) 1)

when: (a) xu(t) IS Xyo,m(t) an (M-1" order polynomial, and (b) thg tare separated by the time interval
[3]. Thus,A-variances are measures of such ddder stability.

Fig. 2(b) shows the data precision when all M+, x@re used to determingqx,v(t) with an unweighted
LSQF. In this case, one can also show that (1juis [7,8,16]. Thus, M orderA-variances can also be
considered data precision measures under theseitiooad The proportionality constants relating

Xjm(tm) to AT)Mx(ty) for both the stability and precision have beenlighbd [7,8]. In the precision

case, the published constant is derived semi-ecafliri[7], but we note that Charles A. Greenhal$ ha
provided the author with a totally analytical detion of this constant [16]. Thus, the Allan vada can
also be interpreted as a measure of data predisioM+1 x(t,) spaced by when a time and frequency
offset are removed from the data by an unweigh®@QI [6,7]. Similarly, the Hadamard variance cao als
be interpreted as a measure of such data preeigien a time and frequency offset ahd frequency drift
are removed from the data by an unweighted LSQF].[6his explains the sensitivity of the Allan
variance and insensitivity of the Hadamard variatocdeterministic frequency drift, since such disfan
unmodeled error term for M = 2 but not for M = 39

C. THE FIT PRECISION (ERROR BARS)-A DERIVED ERROR MEAS URE
From the data precision variances, one can geneszdé we will call the fit precision (deviate) orer
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bars Ayim (tn) ando as given in Table | [9-11]. These are statistestimates of the accuracy based

wj,M ?
both on the observable data precision and thesrad{t) andpg, which are theoretically calculated using a
a specific noise model (and assuming thaift) would precisely reproduce(¥) over T if no noise were
present). For examplpg,=M/(N-M) is the pq for uncorrelated or white ,) and an unweighted LSQF [5].
We note that thipg, does not apply when the(ty) are correlated [7-11]. We will later show thaisth
misuse of the whitgy, is one of the sources of unexpected fitting reswtien neg-p noise is present.

D. THE NEG-P CONVERGENCE PROPERTIES OF VARIANCES

It is well-known that an average variarm%; can be represented using the spectral integrdl 714

oZ =j_+:df K (D) Hs(B)P Lpf) [T =wM; j,M; TM; ...] 2)

Here, H(f) is a response function that describes the nidiseing properties of the system, and(¥is a
spectral kernel that describes thgf)filtering properties of the variance in questimdependent of Kf)
[3,17]. It is well known that thé-variance kernel Ky(f) has 2" highpass (HP) filtering properties for
|fl << 1 [1,3,4]. Less well known is the fact tiiae M" order data precision kernel \(f) has the same
f2M highpass (HP) filtering properties for [f| << 1 emhx,y(t) is an (M-1¥" order polynomial Yy u(t)
[7,8]. This result is true for general fitting tedhues given only minimal restrictions [7,8]. F).shows
this Kju(f) HP behavior when both a weighted and unweight8@F are used as the fitting technique

[7,8]. Thus bothoj-Z’M and ofy,\,, are guaranteed to converge for neg-p noise whee §\1[3,5,6-8].

Weighted LSQF

s A |
1007 oS /] Weighting
| Tens/
—T—|
0 1 0 1 2

Log ;,(fT) (N =1000) Log 14(fT)
Fig. 3. Ku(f) HP filtering behavior for xy m(t).

On the other hand, the accuracy kerngh(® has no HP filtering properties. (In fact, orencshow that
Kim(f)+Ky m(f) =1 for a LSQF [11].) Thuscgv,M relies totally on the HP filtering properties Bi(f)|*
for its convergence in the presence of neg-p n@iskl]. Because of this, there is the obvious textiqm

to “fix” a neg-p accuracy variance divergence simpy replacing it with one of the convergent vades
without further action. In the next section, welwhow that this is improper.



E. EACH VARIANCE ADRESSES A DIFFERENT ERROR QUESTION
We have just shown that each type of variance addsea different statistical error question:

(a) Accuracy: What is the error of the fit from tinee behavior without noise or other error pregent
(b) Data Precision: What are the data fluctuatfoms the fitted behavior?

(c) Fit Precision: What is the estimated fit accyraased on the measured data and a noise model?
(d) Stability: What is the extrapolation or intelgion error to an additional point from a perfétt
point polynomial fit?

From this, it is obvious that one cannot eliminatdivergence problem in one type of variance singly
arbitrarily replacing it with another type, sindéthis does is misleadingly change the questioth leaves
the divergence intact for the original question.

x(t)=f-2 EnseQ”ane Members |
Start T PRl Xj 1. . 4 20. )
- L DA R - ol w,1 —
Noise M#:3:=720 =SB 1 20), g f, - oo
Here | ..
e T * f

Fig. 4. A physical interpretation of a neg-p aemyrdivergence.

This leaves the problem of how to interpret thegidal meaning of such a neg-p accuracy divergefige.
4 shows one such interpretation. Here, we showrgedata ensemble members where the data consists

entirely of f 2 or random walk noise [2]. Note that thi&? noise process is started at finite time (t = 0),
which is called the non-stationary (NS) picturel{eodiscussed later) [2,11,14]. At a tipafter the noise
process has started, we then perform a one-pamarb8@F on the data over T to generate our fit

Xpoly,1(t) = @. One can immediately see that something is ari&s.note thato;, is significantly less
thano,, ;. Thus a white noise based fit precisiofy, will severely underestimate the true accuragy,

when N >> 1. Furthermore, one can easily show #faf - « as -, while 6%, will remain finite [7-

11]. This is a physical meaning of a neg-p accurajance infinity:that the true accuracy of a fit will
become severely inaccurate when t, is large (which is the typical physical case). One can obsfp see

from this example that using the wromg,, and o, ), to represenis,,; in this case will just mask the
problem, not fix it.

The proper response here would be: (a) to theatltianalyzepy using the correct noise model [7-11], (b)
to identify that theo,,, infinity will occur before performing the experimig and (c) to redesign the

system (H(f)) and/or reformulate the question so that theugacy infinity will not occur [7-11]. This last
step often involves the introduction of periodititmation [11].
For | [ noise, note thab%; — « as - but thata?, will remain finite [7,8]. Thus, if one is interest

in obtaining a finite data precision, the propespanse to aij,M infinity is to change the estimation model
M-order, not to arbitrarily switch to an Allan oraHamard variance and leave the model functigp(tx

untouched.
Finally, we note thabﬁV,M OIn(frte) for |f ™ noise and Kf) given by a low pass cut-off, {2]. Thus,

even though thef [ contribution toa3, \, is strictly infinite asd-— e, practically, this|f [* contribution
is often smaller than the white noise contributieven whengtis the age of the universe [17].
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. MYTH 2: ONE CAN OBTAIN PROPER ESTIMATION RESULTS
FROM (NON-HP FILTERED) NEG-P NOISE CONTAINING DATA

In this section, we will show that non-HP filtereteg-p behaves more like systematic error than
conventional noise. Thus, estimation techniquesliast squares and Kalman filters can generawrelgv
anomalous results when such noise is present, s&atimation techniques have difficulty separating
systematic error from true behavior [5]. We whlosv that this systematic-like behavior is due ® tion-
ergodic and infinitely correlated behavior of noR-illtered neg-p noise. In the next sections, slilbw
that neg-p noise has these properties using thestationary (NS) and wide-sense stationary (WSS)
pictures of a random process [2,10,11,14,18].

A. THE NS AND WSS PICTURES OF A RANDOM PROCESSES

Two covariant representations or pictures are gdligarsed when discussing a random proceds Xhe
more inclusive but less familiar one is the noriisteary (NS) picture summarized in Table Il [2,18].the

NS picture, Xt) is zero for t<0 or some other finite value. Bese of this finite start time, the noise
covariance or autocorrelation function of the psscé&(t,t) [14,18] (the same here because we are
assumingzx,(t)=0) has two time arguments; the global or average time from the start of tloésa
process (t=0), and the difference or local time between the covariqrdarguments [18]. The other less
inclusive picture is the more familiar wide-sensatisnary (WSS) one [2,12,14,19]. This picture lsoa
summarized in Table Il. Here,(® is non-zero for all, t and,f) is assumed to be statistically time
invariant so that the autocorrelation function @wngiven by RT). We note that &) must also be
statistically bounded for the process to be WSSabse many WSS theorems require such bounded
behavior for their proof [19]. This bounded behavsoften ignored in descriptions of neg-p noiskich

can lead to erroneous conclusions. Even when tderlying noise process is inherently WSS, note that
one must use the NS(R,1) for small §, because of initial start-up transients [2].

As shown in Table Il, an NS process has three rdiffiecovariant spectral functions that are formgdhie
Fourier Transforms (FTs) of @&,1) with respect to various combinations gfandt [18]. The Wigner-
Ville function Wi(ty,f) in the table can be interpreted as, alépendent PSD and is the most physically
intuitive for neg-p noise analysis. The Loéve SpeutL(fyf) in the table, on the other hand, is useful for
simplifying analytical expressions [2,9]. The Ambity Function A(f,T) in the table is included here for
completeness and is used in signal processing [A8he WSS picture, the SSB PS[f).defined in
Table Il is the well-known spectral function formieg taking the complex Fourier transform g{dR with
respect ta [12,14,19]. Note that one can also use the dosidieband PSD,§), as is common practice
in time and frequency papers [1].

An important measure of the behavior of a randootgss is its correlation timg, which is defined in
Table II. Note that this definition is an extensimina WSS one [20] to include the NS picture in lirrét

of t;— . T¢ iS an important parameter in statistical estinmtinecause NT/t. represents the number of
statistically independent samples over T [20]. Thaxeraging over N samples reduces errors by some
power of N (not N) when the relevant noise process is cdgé|and only when T >¥ [10,11]. This will

be very important in later discussions.

Finally, note from Table Il that one can relate M@ picture to the WSS picture by letting-to (t;— o is
equivalent to letting the,{t) start time go toee) [2,21]. Two important NS to WSS theorems basethis
are also given in Table Il [2,11]. These theorenils play a prominent role in understanding the true
statistical properties of neg-p noise, as we witdss in the next section.



Table Il. Representations of a Random Process
Non-Stationary (NS) Picture
X:(t) = 0 for t<0
ty = Global or average time from start of noise pssce
T = Local or difference time& = Ensemble average

Covariance or Correlation
Fn (x(t) real, Ex.(t) = 0)

Rr(tg, 1) =EX, (tg +T/2)x,(tg —1/2)

R(ty) =0fory<Oorf|>24
Wigner-Ville Function W, (tg, ) =% (R, (tg,T)
Loéve Spectrum Li(fg,f) =% 1, Wi (tg, )
Ambiguity Function Ap(fg,T) =%t Ri(tg,T)
Correlation time Tc=Li

+00
mo.5Rr(tg,0)‘1j dUR, (tg,T)
tg — 00 —00
Number of statistically independent samples over T
(Complex) Fourier

NT/t.
Transform

V() = v() = [ dtexp(-jev(t) [o=21t]

Wide-Sense Stationary (WSS) Picture

< |m t
X:(t) # 0 for all t TR

«1=0
Covariance or Correlation _
R (1) =EX,(tg +T/2)X, (tq —T/2
Fn (x(t) real, £x,(t) = 0) (D r(tg )X (tg )
(SSB) Power Spectral L) =& R.(1
Density r(f) = F (R (7)

NS > WSS Theorems [4,21]

R, (1) = Lim R, (ty,T) L, (f)= Lim W, (tg,f)= Lim joyL,(fg,f
r (1) o r(tg, T Ly(f) tglinw r (tg:f) fg|£nOJ(’-)g r(fg:f)

Ly(fgf) form of L(f) derived from the Laplace Final Value Theorem.

B. THE STATISTICAL PROPERTIES OF NEG-P NOISE

Table lll. Properties of Non-highpass Filtered Neboise
NS Picture:

Rp(tg,T) <o forty;< oo

Ro(tgT) = forty - o
W, (tg, f) <co forallf,ty <o Note bandlimiting needed to make, 1) finite for p>-1
WSS Picture:

Rp(T)=tLimooRp(tg,r)=oo
g—

WSS R(1) is undefinable for alt
Lp(f) :tLimep(tg,f)DH P
-

Ry(t) not needed to defing,(f)
Neg-p noise has anfinite correlation time: 1. =

Neg-p noise isnherently non-ergodic: £Xy(t) # <Xy(t)>7 . co-

One can show that non-HP filtered neg-p noise Iadasic properties listed in Table Il [2]. Notat the
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WSS Ry(1) is infinite for allt, becauser,(1) = Lim R,(tg,1) as given inTable Il. Thus the WSS R) is
tg -

strictly indefinable. However, becausg,(f) = Lim W, (tg,f) and this limit is well-behaved for0, one
tg — 0

can properly define the WSS,(E) for f20 without the use of the WSS,®. Thus, one can interpret
equations such as (2) as the to limit of the NS picture and properly apply thenmieg-p problems.

Another important property of non-HP filtered neg4gise listed in

Table lll is that itst, is infinite. This means that;& effectively zero for all T, which is one of tfectors
that leads to the anomalous neg-p fitting behatiat we will discuss later.

A very important (and not well-known property) odmHP filtered neg-p noise is that it is intrindiga
non-ergodic, that is the infinite time average §(%>7.. iS not equal to the ensemble average(t) for
such noise [10,11,14,22]. This is a consequence tbkorem stating that an NS random procgg} is
ergodic if and only if R(t,,1) is bounded for allt(includinge) and the lastt) point in <x(t)>r becomes
decorrelated with <xXt)>ras T- o [22]. This decorrelation property can be showintply thatt, must be
finite. This is another factor that leads to theraalous fitting behavior of neg-p noise, which wié mow
discuss.

C. ANOMALOUS FITTING BEHAVIOR IN FINITE DATA SETS

Now let us investigate how the non-ergodicity amdinite 1. of neg-p noise effects practical
implementations of fitting techniques, such astlegsiares and Kalman filters. Fig. 5 shows a sitedla
unweighted LSQF for both p =0 and p =-3 noiseemh(a) both the true behaviogtx and the model
function % u(t) are 2 order polynomials (M=3), (b) ¥f) is an ideal Nyquist LP filter, and (c) the
uncorrelateddy, is used to predict the error barsut)+o,;m (Which are so small in the figures that they
appear coalesced with %(t)). In the p = 0 case shown on the left of Fignbte that the fit behaves as
ensemble-based white-noise fitting theory predittat is, %(t) and » u(t) fall on top of each other for the
large N used, and,;u properly predict®,, v.

For the p = -3 case on the right of the figure, &eav, note that x(t) significantly deviates from )
while the white-noise based error bars do not ptgpeedict this deviation.

X ~Xe = Xam T Owjm
Fig. 5. Unweighted LSQF with p = 0 and p = -3 (N42D

What is happening here is that the particulétr)xensemble member in this example has behaviorighat
2" order polynomial-like and thus substantially ctared with %(t) so that LSQF cannot separate this
correlated noise component from the true behaviag(© [5]. This is what generates the anomalougnfitti
results; the fit interprets the correlated noiseeiag part of t). Such anomalous behavior is well-known
as result of correlated systematic error [5] ana ispecific example of a more general principal+tha
linearly dependent variables cannot be separatemypgolution technique, because the determinant of the
solution matrix goes to zero [24]. This systeméike-behavior in the neg-p noise case is a direstilt of

9



its infinitely correlated and non-ergodic naturéaus, £-averaged theory predictions do not represent the
behavior of individual ensemble members over tha dallection interval.

An important consequence of the above is that netsiéening, a procedure meant to determine the true
structure of Xt) by increasing M in the model function (t) until the residuals;x(t,) are uncorrelated
[5], will not properly identify x(t) when non-HP filtered neg-p noise is presenatT$, the truth model for
such noise whitening igncorrelated noise plus true behavior, and neg-p noise is fiightorrelated. Note
that p = -1 noise can be a marginal case when wiloige is also present, because of the slow growth
this noise as,becomes large [17].

-

il
et

¥

+23%
!!";‘— —— 1
-

Range 2>

~ White " Correlated
Noise Model % Noise Model
__Xc T Xa,M + ANj,M

Fig. 6. Anomalous neg-p behavior in a Kalman filter

Fig. 6 shows that Kalman filters also exhibit sactomalous neg-p behavior when neg-p noise is presen
Here, simulation results are shown for both p ;@ p = -2 noise (measurement noise not process nois
[6,12]) when x(t) and x% w(t) are again both quadratic polynomials. In thedfeé graph, where p = -2 and
an uncorrelated noise model is used [4], one ag@s the characteristic veering off i) from x(t)

and the gross underestimation of the true erroth®werror bars. What is even more interestinpesright
graph. Here again p = -2, but the Kalman filtemiggmented with a random walk measurement noise
model, which is supposed to correct for such anousabehavior [6]. One can see thaf{) is closer to
Xs(t) and the error bars do a better job of estingatime true error. However, there still are subshnt
deviations of xu(t) from x(t) and the error bars still underestimate the gurer. The culprit here is the
non-ergodic-like behavior of the neg-p noise arartimicking of the true behavior by the neg-p nolse

is expected that p = -3 noise would exhibit evemersignificant anomalous behavior with an augmented

Kalman filter, because p = -3 noise looks likeawy changing random drift [2]. However, the autihas
not demonstrated this yet.

D. ERGODICITY, tc, AND PROPER FITTING BEHAVIOR

(a) (b) (d)

X "X Xam ™ XguEDym

Fig. 7. Kalman filter simulations for a correlatéduss-Markov process:
(a) Thc=2000, (b) T{:=200, (c) Tt.=20, (d) Tt.=2.

Fig. 7 illustrates that neg-p-like anomalous figtibehavior also occurs in ergodic WSS but corrdlate
processes when one does not hawg ¥ 1. Shown here is a (non-augmented) Kalman sition using
stationary Gauss-Markov noise (single pole lowpigsred white noise [12,14]). This noise is both
ergodic and WSS but hastarelated to the reciprocal of the lowpass kneeuesegy of the noise filter.
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One can observe from the figure that the Kalmaunltebehave as theoretically expected far, 35 1 but
become more and more anomalous as dgproaches 1. This occurs because the single ansamble
members averaged over T here do not behave likie émsemble averaged counterparts when T
approaches.. That is, the noise is netgodic-like over T (E... # <...>;) when we don’t have T/>>1
[11]. One can see here trsatict ergodicity, ... = <...>r_. [14,22] does not guarantee such ergodic-like
behavior over any T. Another way to view this, limtt there are not enough statistically independent
samples N= T/ts when we don't have T/>> 1 for the fit to be statistically meaningful.eMote that
works on ensemble based fitting theory [5,6,12¢mfimplicitly assumeg... [0<...> as N- o for any T,

but we have just shown this is not the case foretated noise processes. This assumption fe0Tis
calledlocal ergodicity [25]. To coin a phrase, a noise process with atanbalt. is intermediate ergodic;

that is, one must havetf/~> 1 for the process to be ergodic-like.

Finally, what is obvious from this above discussi®that non-highpass filtered neg-p noise will gyare
such anomalous polynomial fitting behavior for dhybecausa, = . Again, |f [* noise can often be a
marginal exception, becaugdd large but not infinite and white noise effecés dominate.

IV. CONCLUSIONS

In this paper, we have shown that one cannot sirsphp variances to “fix” a neg-p divergence problem
without further action. We have shown that eacle tgpvariance is a statistical answer to a diffesgror
guestion and such arbitrary swapping merely mdsigrtie problem that caused the divergence. We have
also shown that such neg-p variance divergencefwaendicators of estimation problems that must b
physically addressed, not ignored. Furthermorehae shown that non-highpass filtered neg-p naite a
like systematic error and generates anomalous b@hav statistical estimation techniques like least
squares and Kalman filters when the estimationtfans consist of polynomials. It has also beennsho
that this systematic behavior is due to the nowdigyand infinitely correlated nature of such negegise.

As a final note, the surest way to reduce the atmmsaeffects of neg-p noise is develop frequency
standards with lower neg-p noise. This is good niewfequency standards developers.

REFERENCES

[1] Standard Definitions of Physical Quantities for Bamental Frequency and Time Metrology—
Random Instabilities, IEEE Standard 1139-1999, IFEI®9.

[2] V. S. Reinhardt, “Modeling Negative Power Law Ngis@ Proc. 2008 |IEEE IFCS, pp. 685-592.

[3] V. S. Reinhardt, “A Physical Interpretation of ifence Variancesjh the Proc.. 2007 IFCS, pp.
961-968.

[4] R.A., Baugh, “Frequency Modulation Analysis withethladamard Varianceijh Proc. 25th Annual
Frequency Control Symposium, 1971, pp. 222-225.

[5] J. R. WolbergPrediction Analysis, Princeton, NJ: D. Van Nostrand and Co, 1967.

[6] H. W. Sorenson, “Kalman Filtering Techniques,” Advances in Control Systems (Vol. 3), C. T.
Leondes (Ed.), New York: Academic Press, 1966.

11



[7]1 V, S. Reinhardt, “How Extracting Information fromafa Highpass Filters its Additive Noisari
Proc. 39th PTTI Systems and Applications Meeting, Dec., 2007, pp. 559-580.

[8] V. S. Reinhardt, “On Difference Variances as Reslidbrror Measures in Geolocationifi Proc.
Ingtitute of Navigation 2008 National Technical Meeting, Jan., 2008, pp. 763-772.

[9] V. S. Reinhardt, “Characterizing the Impact of TiE@or on General Systemsyi Proc. 2008 |[EEE
IFC, pp. 677-684.

[10] V. S. Reinhardt, “Zero Mean Noise Processes thatNdb Appear to be Zero Meanjh Proc.
Ingtitute of Navigation International Technical Meeting 2009, January 26-28, 2009, pp 384-390.

[11] V. S. Reinhardt, “The Profound Impact of Negativaver Law Noise on the Estimation of Causal
Behavior,”in Proc. 2009 IEEE IFC, pp. 322-327.

[12] R. G. Brown, Introduction to Random Signal Analyaigd Kalman Filtering, New York: John Wiley
& Sons, 1983.

[13] IEEE Guide for Measurement of Environmental Sevifigs of Standard Frequency Generators,
IEEE Std 1193, 2003.

[14] A. Papoulis and S. U. Pillai, Probability, RandorarMbles, and Stochastic Process&xdt, Boston
MA: McGraw-Hill, 2002.

[15] D. A. Howe, R. L. Beard, C. A. Greenhall, F. VeteptW. J. Riley, and T. K. Peppler,
“Enhancements to GPS Operations and Clock Evahmtidsing a ‘Total' Hadamard Deviation,”
IEEE trans. UFFC, v. 52, #8, Aug. 2005, pp. 1253-1261.

[16] C. A. Greenhall, Jet Propulsion Laboratgsiyate communication, June, 2009.

[17] Victor S. Reinhardt, “A Review of Time Jitter andgidal Systems'in Proc. 2005 |EEE IFC, pp. 38-
45,

[18] L. L. Scharf, B. Firedlander, and D. J. ThomsorQ8,9‘Covavariant Estimators of Time-Frequency
Descriptors for Nonstationary Random ProcessisProc. 32" Asilomar Conference on Sgnals,
Systems, and Computers, v, Pacific Grove, CA, 1998, pp 808-811

[19] W. B. Davenport, Jr. and W. L. Rodn Introduction to the Theory of Random Sgnals and Noise,
New York, NY: McGraw-Hill, 1958.

[20] C. A. Greenhall, “Recipes for Degrees of Freedorkrefquency Stability Estimators,EEE Trans.
&M, vol. 40, no. 6, Dec., 1991, pp. 994-999.

[21] M. S. Keshner, “1/f Noise,” Proc. IEEE, v. 70, 9 March, 1982, pp. 212-218.
[22] E. ParzanSochastic Processes, San Francisco, CA: Holden-Day, 1966.
[23] D. M. Young lterative Solution of Large Linear Systems, New York, NY: Academic Press, 1971.

[24] V F Gaposkin, “The Local Ergodic Theorem for GrowgdsUnitary Operators and Second Order
Stationary Processes,” Math. USSR Sb. 39, 198223p242.

12



Preprint, Proceedings of the Precise Time and Timeval Systems and Applications Meeting,
Albuquerque, New Mexico, November 17-19, 2009.

[25] M. Abramowitz and I, A. Stegun, Handbook of Mathé¢igs Functions: with Formulas, Graphs, and
Mathematical Tables *ed., Mineola, New York: Dover, 1965.

13



